Intoxicating effects of alcohol depend on acid-sensing ion channels | Neuropsychopharmacology

2022-10-16 16:54:47 By : Mr. Shangguo Ma

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persons at risk for developing alcohol use disorder (AUD) differ in their sensitivity to acute alcohol intoxication. Alcohol effects are complex and thought to depend on multiple mechanisms. Here, we explored whether acid-sensing ion channels (ASICs) might play a role. We tested ASIC function in transfected CHO cells and amygdala principal neurons, and found alcohol potentiated currents mediated by ASIC1A homomeric channels, but not ASIC1A/2 A heteromeric channels. Supporting a role for ASIC1A in the intoxicating effects of alcohol in vivo, we observed marked alcohol-induced changes on local field potentials in basolateral amygdala, which differed significantly in Asic1a–/– mice, particularly in the gamma, delta, and theta frequency ranges. Altered electrophysiological responses to alcohol in mice lacking ASIC1A, were accompanied by changes in multiple behavioral measures. Alcohol administration during amygdala-dependent fear conditioning dramatically diminished context and cue-evoked memory on subsequent days after the alcohol had cleared. There was a significant alcohol by genotype interaction. Context- and cue-evoked memory were notably worse in Asic1a–/– mice. We further examined acute stimulating and sedating effects of alcohol on locomotor activity, loss of righting reflex, and in an acute intoxication severity scale. We found loss of ASIC1A increased the stimulating effects of alcohol and reduced the sedating effects compared to wild-type mice, despite similar blood alcohol levels. Together these observations suggest a novel role for ASIC1A in the acute intoxicating effects of alcohol in mice. They further suggest that ASICs might contribute to intoxicating effects of alcohol and AUD in humans.

This is a preview of subscription content, access via your institution

Get full journal access for 1 year

All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.

Get time limited or full article access on ReadCube.

All prices are NET prices.

Glantz MD, Bharat C, Degenhardt L, Sampson NA, Scott KM, Lim CCW, et al. The epidemiology of alcohol use disorders cross-nationally: findings from the World Mental Health Surveys. Addict Behav. 2020;102:106128. https://doi.org/10.1016/j.addbeh.2019.106128.

Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD. 2010 National and state costs of excessive alcohol consumption. Am J Prev Med. 2015;49:e73–9. https://doi.org/10.1016/j.amepre.2015.05.031.

Rehm J, Gmel GE Sr, Gmel G, Hasan OSM, Imtiaz S, Popova S, et al. The relationship between different dimensions of alcohol use and the burden of disease—an update. Addiction. 2017;112:968–1001. https://doi.org/10.1111/add.13757.

Article  PubMed  PubMed Central  Google Scholar 

Kendler KS, Ohlsson H, Karriker-Jaffe KJ, Sundquist J, Sundquist K. Social and economic consequences of alcohol use disorder: a longitudinal cohort and co-relative analysis. Psychol Med. 2017;47:925–35. https://doi.org/10.1017/S0033291716003032.

CAS  Article  PubMed  Google Scholar 

Schuckit MA. Self-rating of alcohol intoxication by young men with and without family histories of alcoholism. J Stud Alcohol. 1980;41:242–9.

Schuckit MA, Smith TL. An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry. 1996;53:202–10.

King AC, de Wit H, McNamara PJ, Cao D. Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry. 2011;68:389–99. https://doi.org/10.1001/archgenpsychiatry.2011.26.

Article  PubMed  PubMed Central  Google Scholar 

King AC, McNamara PJ, Hasin DS, Cao D. Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. 2014;75:798–806. https://doi.org/10.1016/j.biopsych.2013.08.001.

Koob GF, Arends MA, Le Moal M. Chapter 6 - Alcohol. Drugs, addiction, and the brain. San Diego: Academic Press; 2014. p. 173–219.

Dwyer DS, Bradley RJ. Chemical properties of alcohols and their protein binding sites. Cell Mol Life Sci Cmls. 2000;57:265–75. https://doi.org/10.1007/PL00000689.

CAS  Article  PubMed  Google Scholar 

Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96:1223–38. https://doi.org/10.1016/j.neuron.2017.10.032.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14:461–71. https://doi.org/10.1038/nrn3529.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7. https://doi.org/10.1038/386173a0.

CAS  Article  PubMed  Google Scholar 

Hesselager M, Timmermann DB, Ahring PK. pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing Ion channel subunits. J Biol Chem. 2004;279:11006–15. https://doi.org/10.1074/jbc.M313507200.

CAS  Article  PubMed  Google Scholar 

Wu J, Xu Y, Jiang YQ, Xu J, Hu Y, Zha XM. ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain. 2016;9:4. https://doi.org/10.1186/s13041-016-0185-7.

Article  PubMed  PubMed Central  Google Scholar 

Joeres N, Augustinowski K, Neuhof A, Assmann M, Gründer S. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1. Sci Rep. 2016;6:27647. https://doi.org/10.1038/srep27647.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric ASIC channels composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci: Off J Soc Neurosci. 2011;31:9723–34. https://doi.org/10.1523/JNEUROSCI.1665-11.2011.

Vullo S, Kellenberger S. A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol Res. 2020;154:104166. https://doi.org/10.1016/j.phrs.2019.02.005.

CAS  Article  PubMed  Google Scholar 

Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29:578–86. https://doi.org/10.1016/j.tins.2006.06.014.

CAS  Article  PubMed  Google Scholar 

Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, Stump M, et al. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci. 2014;17:1083–91. https://doi.org/10.1038/nn.3750.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Du J, Reznikov LR, Price MP, Zha X-M, Lu Y, Moninger TO, et al. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci. 2014;111:8961–6. https://doi.org/10.1073/pnas.1407018111.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ. Acid-sensing Ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in Hippocampal neurons. J Biol Chem. 2004;279:18296–305. https://doi.org/10.1074/jbc.M312145200.

CAS  Article  PubMed  Google Scholar 

Chiang P-H, Chien T-C, Chen C-C, Yanagawa Y, Lien C-C. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory. Sci Rep. 2015;5:10143. https://doi.org/10.1038/srep10143.

CAS  Article  PubMed  PubMed Central  Google Scholar 

González-Inchauspe C, Urbano FJ, Di Guilmi MN, Uchitel OD. Acid-sensing ion channels activated by evoked released protons modulate synaptic transmission at the mouse calyx of Held synapse. J Neurosci. 2017;37:2589–99. https://doi.org/10.1523/jneurosci.2566-16.2017.

Article  PubMed  PubMed Central  Google Scholar 

Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.

Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr., Welsh MJ. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci. 2003;23:5496–502.

Li W-G, Liu M-G, Deng S, Liu Y-M, Shang L, Ding J, et al. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun. 2016;7:13770. https://doi.org/10.1038/ncomms13770.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Price MP, Gong H, Parsons MG, Kundert JR, Reznikov LR, Bernardinelli L, et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014;13:179–94. https://doi.org/10.1111/gbb.12108.

CAS  Article  PubMed  Google Scholar 

Jiang Q, Wang CM, Fibuch EE, Wang JQ, Chu XP. Differential regulation of locomotor activity to acute and chronic cocaine administration by acid-sensing ion channel 1a and 2 in adult mice. Neuroscience. 2013;246:170–8. https://doi.org/10.1016/j.neuroscience.2013.04.059.

CAS  Article  PubMed  Google Scholar 

Mukhopadhyay M, Bera AK. Modulation of acid-sensing ion channels by hydrogen sulfide. Biochem Biophys Res Commun. 2020;527:71–5. https://doi.org/10.1016/j.bbrc.2020.04.092.

CAS  Article  PubMed  Google Scholar 

Mukhopadhyay M, Singh A, Sachchidanand S, Bera AK. Quercetin inhibits acid-sensing ion channels through a putative binding site in the central vestibular region. Neuroscience. 2017;348:264–72. https://doi.org/10.1016/j.neuroscience.2017.02.025.

CAS  Article  PubMed  Google Scholar 

Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature. 2000;407:1007–11. https://doi.org/10.1038/35039512.

CAS  Article  PubMed  Google Scholar 

Coryell MW, Ziemann AE, Westmoreland PJ, Haenfler JM, Kurjakovic Z, Zha XM, et al. Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol Psychiatry. 2007;62:1140–8. https://doi.org/10.1016/j.biopsych.2007.05.008.

CAS  Article  PubMed  Google Scholar 

Cohen MX. Analyzing neural time series data: theory and practice. Cambridge, MA: MIT press; 2014.

Taugher RJ, Lu Y, Fan R, Ghobbeh A, Kreple CJ, Faraci FM, et al. ASIC1A in neurons is critical for fear-related behaviors. Genes Brain Behav. 2017;16:745–55. https://doi.org/10.1111/gbb.12398.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gould TJ. Ethanol disrupts fear conditioning in C57BL/6 mice. J Psychopharmacol (Oxf, Engl). 2003;17:77–81. https://doi.org/10.1177/0269881103017001702.

Gould TJ, Lommock JA. Nicotine enhances contextual fear conditioning and ameliorates ethanol-induced deficits in contextual fear conditioning. Behav Neurosci. 2003;117:1276–82. https://doi.org/10.1037/0735-7044.117.6.1276.

CAS  Article  PubMed  Google Scholar 

Gulick D, Gould TJ. Acute ethanol has biphasic effects on short- and long-term memory in both foreground and background contextual fear conditioning in C57BL/6 mice. Alcohol: Clin Exp Res. 2007;31:1528–37. https://doi.org/10.1111/j.1530-0277.2007.00458.x.

Seemiller LR, Gould TJ. Adult and adolescent C57BL/6J and DBA/2J mice are differentially susceptible to fear learning deficits after acute ethanol or MK-801 treatment. Behavioural Brain Res. 2021;410:113351. https://doi.org/10.1016/j.bbr.2021.113351.

Bocarsly ME, da Silva E Silva D, Kolb V, Luderman KD, Shashikiran S, Rubinstein M, et al. A mechanism linking two known vulnerability factors for alcohol abuse: heightened alcohol stimulation and low striatal dopamine D2 receptors. Cell Rep. 2019;29:1147–63.e5. https://doi.org/10.1016/j.celrep.2019.09.059.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Salamone JD, Cousins MS, Maio C, Champion M, Turski T, Kovach J. Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology. 1996;125:105–12. https://doi.org/10.1007/BF02249408.

CAS  Article  PubMed  Google Scholar 

Chuck TL, McLaughlin PJ, Arizzi-LaFrance MN, Salamone JD, Correa M. Comparison between multiple behavioral effects of peripheral ethanol administration in rats: Sedation, ataxia, and bradykinesia. Life Sci. 2006;79:154–61. https://doi.org/10.1016/j.lfs.2005.12.045.

CAS  Article  PubMed  Google Scholar 

Blednov YA, Black M, Benavidez JM, Da Costa A, Mayfield J, Harris RA. Sedative and motor incoordination effects of ethanol in mice lacking CD14, TLR2, TLR4, or MyD88. Alcohol: Clin Exp Res. 2017;41:531–40. https://doi.org/10.1111/acer.13314.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC; 2020.

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.

Fox J, Weisberg S. An {R} Companion to Applied Regression. Thousand Oaks, CA: Sage; 2019. p. car citation.

Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer; 2002.

Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Implementing a class of permutation tests: the coin package. J Stat Softw. 2008;28:23. https://doi.org/10.18637/jss.v028.i08.

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:48. https://doi.org/10.18637/jss.v067.i01.

Nash JC, Varadhan R. Unifying optimization algorithms to aid software system users: optimx for R. J Stat Softw. 2011;43:14. https://doi.org/10.18637/jss.v043.i09.

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:26. https://doi.org/10.18637/jss.v082.i13.

Chang W. extrafont: Tools for using fonts. R package version 0.17. 2014.

Smith ESJ, Zhang X, Cadiou H, McNaughton PA. Proton binding sites involved in the activation of acid-sensing ion channel ASIC2a. Neurosci Lett. 2007;426:12–7. https://doi.org/10.1016/j.neulet.2007.07.047.

CAS  Article  PubMed  Google Scholar 

García-Añoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP. Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci: Off J Soc Neurosci. 2001;21:2678–86. https://doi.org/10.1523/JNEUROSCI.21-08-02678.2001.

Cadiou H, Studer M, Jones NG, Smith ESJ, Ballard A, McMahon SB, et al. Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci. 2007;27:13251–60. https://doi.org/10.1523/jneurosci.2135-07.2007.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Perra S, Pillolla G, Luchicchi A, Pistis M. Alcohol inhibits spontaneous activity of basolateral amygdala projection neurons in the rat: involvement of the endocannabinoid system. Alcohol: Clin Exp Res. 2008;32:443–9. https://doi.org/10.1111/j.1530-0277.2007.00588.x.

Zhu PJ, Lovinger DM. Ethanol potentiates GABAergic synaptic transmission in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. J Neurophysiol. 2006;96:433–41. https://doi.org/10.1152/jn.01380.2005.

Silberman Y, Shi L, Brunso-Bechtold JK, Weiner JL. Distinct mechanisms of ethanol potentiation of local and paracapsular GABAergic synapses in the rat basolateral amygdala. J Pharmacol Exp Ther. 2008;324:251–60. https://doi.org/10.1124/jpet.107.128728.

CAS  Article  PubMed  Google Scholar 

Läck AK, Ariwodola OJ, Chappell AM, Weiner JL, McCool BA. Ethanol inhibition of kainate receptor-mediated excitatory neurotransmission in the rat basolateral nucleus of the amygdala. Neuropharmacology. 2008;55:661–8. https://doi.org/10.1016/j.neuropharm.2008.05.026.

Article  PubMed  PubMed Central  Google Scholar 

Läck AK, Diaz MR, Chappell A, DuBois DW, McCool BA. Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol. 2007;98:3185–96. https://doi.org/10.1152/jn.00189.2007.

Robinson SL, Alexander NJ, Bluett RJ, Patel S, McCool BA. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala. Neuropharmacology. 2016;108:474–84. https://doi.org/10.1016/j.neuropharm.2015.12.005.

CAS  Article  PubMed  Google Scholar 

Lindemeyer AK, Liang J, Marty VN, Meyer EM, Suryanarayanan A, Olsen RW, et al. Ethanol-induced plasticity of GABAA receptors in the basolateral amygdala. Neurochem Res. 2014;39:1162–70. https://doi.org/10.1007/s11064-014-1297-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gremel CM, Cunningham CL. Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology. 2009;34:1443–53. https://doi.org/10.1038/npp.2008.179.

CAS  Article  PubMed  Google Scholar 

Gremel CM, Cunningham CL. Roles of the nucleus accumbens and amygdala in the acquisition and expression of ethanol-conditioned behavior in mice. J Neurosci. 2008;28:1076–84. https://doi.org/10.1523/jneurosci.4520-07.2008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sciascia JM, Reese RM, Janak PH, Chaudhri N. Alcohol-seeking triggered by discrete Pavlovian cues is invigorated by alcohol contexts and mediated by glutamate signaling in the basolateral amygdala. Neuropsychopharmacology. 2015;40:2801–12. https://doi.org/10.1038/npp.2015.130.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiological Rev. 2003;83:803–34. https://doi.org/10.1152/physrev.00002.2003.

Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell. 2009;139:1012–21. https://doi.org/10.1016/j.cell.2009.10.029.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Slawecki CJ. Altered EEG responses to ethanol in adult rats exposed to ethanol during adolescence. Alcohol: Clin Exp Res. 2002;26:246–54. https://doi.org/10.1111/j.1530-0277.2002.tb02531.x.

Pian JP, Criado JR, Walker BM, Ehlers CL. Differential effects of acute alcohol on EEG and sedative responses in adolescent and adult Wistar rats. Brain Res. 2008;1194:28–36. https://doi.org/10.1016/j.brainres.2007.11.057.

CAS  Article  PubMed  Google Scholar 

Ehlers CL, Desikan A, Wills DN. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats. Alcohol. 2013;47:601–10. https://doi.org/10.1016/j.alcohol.2013.09.040.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85. https://doi.org/10.1037//0735-7044.106.2.274.

CAS  Article  PubMed  Google Scholar 

Gulick D, Gould TJ. Interactive effects of ethanol and nicotine on learning in C57BL/6J mice depend on both dose and duration of treatment. Psychopharmacology. 2008;196:483–95. https://doi.org/10.1007/s00213-007-0982-x.

CAS  Article  PubMed  Google Scholar 

Pohorecky LA. Biphasic action of ethanol. Biobehav Rev. 1977;1:231–40. https://doi.org/10.1016/0147-7552(77)90025-0.

Zhou R-P, Leng T-D, Yang T, Chen F-H, Xiong Z-G. Acute ethanol exposure promotes autophagy-lysosome pathway-dependent ASIC1a protein degradation and protects against acidosis-induced neurotoxicity. Mol Neurobiol. 2019;56:3326–40. https://doi.org/10.1007/s12035-018-1289-0.

CAS  Article  PubMed  Google Scholar 

Halperin ML, Hammeke M, Josse RG, Jungas RL. Metabolic acidosis in the alcoholic: a pathophysiologic approach. Metabolism. 1983;32:308–15. https://doi.org/10.1016/0026-0495(83)90197-x.

CAS  Article  PubMed  Google Scholar 

Goldman H, Sapirstein L, Murphy S, Moore J. Alcohol and regional blood flow in brains of rats. Proc Soc Exp Biol Med. 1973;144:983–8.

Mitchell MA, Belknap JK. The effects of alcohol withdrawal and acute doses of alcohol on the acid-base balance in mice and rats. Drug Alcohol Depend. 1982;10:283–94. https://doi.org/10.1016/0376-8716(82)90031-X.

CAS  Article  PubMed  Google Scholar 

Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR. Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci. 2004;24:10159–66. https://doi.org/10.1523/jneurosci.3004-04.2004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Imperato A, Di Chiara G. Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther. 1986;239:219–28.

Nie Z, Madamba SG, Siggins GR. Ethanol inhibits glutamatergic neurotransmission in nucleus accumbens neurons by multiple mechanisms. J Pharmacol Exp Ther. 1994;271:1566–73.

Yu Z, Wu Y-J, Wang Y-Z, Liu D-S, Song X-L, Jiang Q, et al. The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal. 2018;11. https://doi.org/10.1126/scisignal.aar4481

Seidenbecher T, Laxmi TR, Stork O, Pape H-C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 2003;301:846–50.

Pape H-C, Narayanan RT, Smid J, Stork O, Seidenbecher T. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus. 2005;15:874–80. https://doi.org/10.1002/hipo.20120.

Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci. 2014;17:106–13. https://doi.org/10.1038/nn.3582.

CAS  Article  PubMed  Google Scholar 

Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, et al. 4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nat Neurosci. 2016;19:605–12. https://doi.org/10.1038/nn.4251.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kling AS, Lloyd RL, Perryman KM. Slow wave changes in amygdala to visual, auditory, and social stimuli following lesions of the inferior temporal cortex in squirrel monkey (Saimiri sciureus). Behav Neural Biol. 1987;47:54–72. https://doi.org/10.1016/S0163-1047(87)90156-7.

CAS  Article  PubMed  Google Scholar 

Lloyd RL, Kling AS. Delta activity from amygdala in squirrel monkeys (Saimiri sciureus): Influence of social and environmental context. Behav Neurosci. 1991;105:223–9. https://doi.org/10.1037/0735-7044.105.2.223.

CAS  Article  PubMed  Google Scholar 

Fedele T, Tzovara A, Steiger B, Hilfiker P, Grunwald T, Stieglitz L, et al. The relation between neuronal firing, local field potentials and hemodynamic activity in the human amygdala in response to aversive dynamic visual stimuli. Neuroimage. 2020;213:116705. https://doi.org/10.1016/j.neuroimage.2020.116705.

Bauer EP, Paz R, Paré D. Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J Neurosci. 2007;27:9369–79. https://doi.org/10.1523/jneurosci.2153-07.2007.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Popescu AT, Popa D, Paré D. Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci. 2009;12:801–7. https://doi.org/10.1038/nn.2305.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kanta V, Pare D, Headley DB. Closed-loop control of gamma oscillations in the amygdala demonstrates their role in spatial memory consolidation. Nat Commun. 2019;10:3970. https://doi.org/10.1038/s41467-019-11938-8.

Article  PubMed  PubMed Central  Google Scholar 

Courtin J, Karalis N, Gonzalez-Campo C, Wurtz H, Herry C. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem. 2014;113:82–9. https://doi.org/10.1016/j.nlm.2013.09.015.

CAS  Article  PubMed  Google Scholar 

Heath AC, Madden PA, Bucholz KK, Dinwiddie SH, Slutske WS, Bierut LJ, et al. Genetic differences in alcohol sensitivity and the inheritance of alcoholism risk. Psychol Med. 1999;29:1069–81.

Chutuape MA, de Wit H. Relationship between subjective effects and drug preferences: ethanol and diazepam. Drug Alcohol Depend. 1994;34:243–51.

King AC, Houle T, Wit H, Holdstock L, Schuster A. Biphasic alcohol response differs in heavy versus light drinkers. Alcohol: Clin Exp Res. 2002;26:827–35.

We would like to thank Dr. Youngcho Kim for assistance in in vivo electrophysiology techniques.

JAW was supported by NIH National Institute of Mental Health grant R01MH113325, NIH National Institute of Drug Abuse grant R01DA052953, the Roy J. Carver Charitable Trust, the Roy J. Carver Chair, a U.S. Department of Veterans Affairs Merit Review Award, and the U.S. Department of Veterans Affairs. GISH was supported by NIH National Institute of Neurological Disorders and Stroke training grant T32NS007421, NIH National Institute of General Medical Sciences training grant T32GM067795, and the University of Iowa Ballard and Seashore Dissertation Fellowship. ACC was supported by NIH National Institute of Mental Health training grant T32MH019113. MJM was supported by the Iowa Neuroscience Institute Summer Scholar Award. BJD was supported by NS-112573. AKH was supported by a fellowship from UGC, Govt. of India. NSN was supported by NIH National Institute of Mental Health grant R01MH116043-01A1. Tools for CHO cell research (rASIC1a-IRES2-DsRed and pcDNA3.1-rASIC2A) were given to AKB by Francois Rugiero, University College London, UK and Peter McNaughton, University of Cambridge, UK, respectively.

Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA

Gail I. S. Harmata, Aubrey C. Chan, Nandakumar S. Narayanan & John A. Wemmie

Department of Psychiatry, University of Iowa, Iowa City, IA, USA

Gail I. S. Harmata, Aubrey C. Chan, Madison J. Merfeld, Rebecca J. Taugher-Hebl, Jason B. Hardie, Rong Fan, Jeffrey D. Long, Grace Z. Wang & John A. Wemmie

Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA

Gail I. S. Harmata, Aubrey C. Chan, Madison J. Merfeld, Rebecca J. Taugher-Hebl, Jason B. Hardie, Rong Fan, Grace Z. Wang, Nandakumar S. Narayanan & John A. Wemmie

Department of Neurosurgery, University of Iowa, Iowa City, IA, USA

Gail I. S. Harmata, Madison J. Merfeld, Brian J. Dlouhy & John A. Wemmie

Pharmacological Sciences Predoctoral Research Training Program, Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA

Department of Veterans Affairs Medical Center, Iowa City, IA, USA

Gail I. S. Harmata, Aubrey C. Chan, Madison J. Merfeld, Rebecca J. Taugher-Hebl, Jason B. Hardie, Rong Fan, Grace Z. Wang & John A. Wemmie

Department of Internal Medicine, University of Iowa, Iowa City, IA, USA

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Anjit K. Harijan & Amal K. Bera

Department of Biostatistics, University of Iowa, Iowa City, IA, USA

Department of Neurology, University of Iowa, Iowa City, IA, USA

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA

Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, USA

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

GISH conceptualized experiments, acquired data, analyzed data, interpreted data, and wrote the manuscript. ACC conceptualized experiments, acquired data, analyzed data, and interpreted data. MJM conceptualized experiments and acquired data. RJT acquired data, analyzed data, interpreted data, and wrote the manuscript. AKH acquired and analyzed data. JBH acquired and analyzed data. RF acquired data. JDL was an essential contributor to advanced data analysis. GZW acquired data. BJD conceptualized experiments, provided funding, and interpreted data. AKB conceptualized experiments. NSN conceptualized experiments and advised on data analysis. JAW conceptualized experiments, interpreted data, provided funding, and wrote the manuscript.

Correspondence to John A. Wemmie.

The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Harmata, G.I.S., Chan, A.C., Merfeld, M.J. et al. Intoxicating effects of alcohol depend on acid-sensing ion channels. Neuropsychopharmacol. (2022). https://doi.org/10.1038/s41386-022-01473-4

DOI: https://doi.org/10.1038/s41386-022-01473-4

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Neuropsychopharmacology (Neuropsychopharmacol.) ISSN 1740-634X (online) ISSN 0893-133X (print)